The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Projected changes in terrestrial carbon storage in Europe under climate and land use change, 1990-2100

Author

  • S Zaehle
  • A Bondeau
  • TR Carter
  • W Cramer
  • M Erhard
  • IC Prentice
  • I Reginster
  • MDA Rounsevell
  • S Sitch
  • Benjamin Smith
  • PC Smith
  • Martin Sykes

Summary, in English

Changes in climate and land use, caused by socio-economic changes, greenhouse gas emissions, agricultural policies and other factors, are known to affect both natural and managed ecosystems, and will likely impact on the European terrestrial carbon balance during the coming decades. This study presents a comprehensive European Union wide (EU15 plus Norway and Switzerland, EU*) assessment of potential future changes in terrestrial carbon storage considering these effects based on four illustrative IPCC-SRES storylines (A1FI, A2, B1, B2). A process-based land vegetation model (LPJ-DGVM), adapted to include a generic representation of managed ecosystems, is forced with changing fields of land-use patterns from 1901 to 2100 to assess the effect of land-use and cover changes on the terrestrial carbon balance of Europe. The uncertainty in the future carbon balance associated with the choice of a climate change scenario is assessed by forcing LPJ-DGVM with output from four different climate models (GCMs: CGCM2, CSIRO2, HadCM3, PCM2) for the same SRES storyline. Decrease in agricultural areas and afforestation leads to simulated carbon sequestration for all land-use change scenarios with an average net uptake of 17-38 Tg C/year between 1990 and 2100, corresponding to 1.9-2.9% of the EU*s CO2 emissions over the same period. Soil carbon losses resulting from climate warming reduce or even offset carbon sequestration resulting from growth enhancement induced by climate change and increasing atmospheric CO2 concentrations in the second half of the twenty-first century. Differences in future climate change projections among GCMs are the main cause for uncertainty in the cumulative European terrestrial carbon uptake of 4.4-10.1 Pg C between 1990 and 2100.

Publishing year

2007

Language

English

Pages

380-401

Publication/Series

Ecosystems

Volume

10

Document type

Journal article review

Publisher

Springer

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-9840