The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals.

Author

  • Valentine Nkemka
  • Marika Murto

Summary, in English

Seaweed can be anaerobically digested for the production of energy-rich methane. However, the use of seaweed digestate as a fertilizer may be restricted because of the high heavy metal content especially cadmium. Reducing the concentration of heavy metals in the digestate will enable its use as a fertilizer. In this laboratory-scale study, the potential of seaweed and its leachate in the production of methane were evaluated in batch tests. The effect of removing the heavy metals from seaweed leachate was evaluated in both batch test and treatment in an upflow anaerobic sludge blanket (UASB) reactor. The heavy metals were removed from seaweed leachate using an imminodiacetic acid (IDA) polyacrylamide cryogel carrier. The methane yield obtained in the anaerobic digestion of seaweed was 0.12 N l CH(4)/g VS(added). The same methane yield was obtained when the seaweed leachate was used for methane production. The IDA-cryogel carrier was efficient in removing Cd(2+), Cu(2+), Ni(2+) and Zn(2+) ions from seaweed leachate. The removal of heavy metals in the seaweed leachate led to a decrease in the methane yield. The maximum sustainable organic loading rate (OLR) attained in the UASB reactor was 20.6 g tCOD/l/day corresponding to a hydraulic retention time (HRT) of 12 h and with a total COD removal efficiency of about 81%. Hydrolysis and treatment with IDA cryogel reduced the heavy metals content in the seaweed leachate before methane production. This study also demonstrated the suitability of the treatment of seaweed leachate in a UASB reactor.

Department/s

Publishing year

2010

Language

English

Pages

1573-1579

Publication/Series

Journal of Environmental Management

Volume

91

Issue

7

Document type

Journal article

Publisher

Elsevier

Topic

  • Industrial Biotechnology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0301-4797