The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA

Author

Summary, in English

Models based on generalized plant physiological theory represent a promising approach for describing vegetation responses to environmental drivers on large scales but must be tested for their ability to reproduce features of real vegetation. We tested the capability of a generalized vegetation model (LPJ-GUESS) to simulate vegetation structural and compositional dynamics under various disturbance regimes at the transition between prairie, northern hardwoods, and boreal forest in the Great Lakes region of the United States. LPJ-GUESS combines detailed representations of population dynamics as commonly used in forest gap models with the same mechanistic representations of plant physiological processes as adopted by a dynamic global vegetation model (the Lund-Potsdam-Jena [LPJ] model), which has been validated from the stand to the global scale. The model does not require site-specific calibration. The required input data are. information on climate, atmospheric CO2 concentration, and soil texture class, as 'well as information on generally recognized species traits (broad-leaved vs. needle-leaved, general climatic range, two fire-resistance classes, shade-tolerance class, and maximum longevity). Model predictions correspond closely to observed patterns of vegetation dynamics and standing biomass at an old-growth eastern hemlock (Tsuga canadensis)/hardwood forest (Sylvania Wilderness, Michigan), an old-growth forest remnant from the "Great Lakes Pines Forest" (Itasca State Park, Minnesota), and a presettlement savanna (Cedar Creek Natural History Area, Minnesota). At all three sites, disturbance (wind or fire) strongly controls species composition and stand biomass. The model could be used to simulate vegetation dynamics on a regional basis or under past or future climates and atmospheric CO, levels, without a need for reparameterization.

Publishing year

2004

Language

English

Pages

519-530

Publication/Series

Ecology

Volume

85

Issue

2

Document type

Journal article

Publisher

Ecological Society of America

Topic

  • Physical Geography

Keywords

  • Itasca State Park
  • North America
  • Great Lakes region
  • forest gap models
  • disturbance
  • fire
  • USA
  • Minnesota
  • Cedar Creek Natural History Area
  • ecosystem model
  • LPJ-GUESS
  • old-growth forest
  • savanna
  • Sylvania Wilderness
  • Michigan
  • vegetation dynamics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0012-9658