The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Human urinary bladder smooth muscle is dependent on membrane cholesterol for cholinergic activation.

Author

Summary, in English

Voiding is mediated by muscarinic receptors in urinary bladder smooth muscle cells. Lipid rafts and caveolae are cholesterol enriched membrane domains that modulate the activity of G protein-coupled receptors and second messenger systems. Conflicting findings regarding sensitivity of muscarinic signalling to cholesterol desorption, which perturbs lipid rafts and caveolae, have been reported, and no study has used human urinary bladder. Here, the dependence of human bladder muscarinic receptor signalling on plasma membrane cholesterol was examined. Nerve-mediated contraction, elicited by electrical field stimulation of human bladder strips, was impaired by desorption of cholesterol using methyl-beta-cyclodextrin, and the concentration-response curve for the muscarinic agonist carbachol was right-shifted. No effect of cholesterol desorption was observed in rat, and in mouse increased maximum contraction was seen. Expression of caveolin-1, PLC(beta1) and M(3) muscarinic receptors did not differ between species in a manner that would explain the differential sensitivity to cholesterol desorption. In human bladder, threshold depolarisation eliminated the difference between cyclodextrin-treated and control preparations. Contraction elicited by depolarisation per se was not affected. M(3) muscarinic receptors appeared clustered along plasma membrane profiles as shown by immunohistochemical staining of human bladder, but no redistribution in association with cholesterol reduction were seen. Thus, muscarinic receptor-induced contraction of the urinary bladder exhibits species-specific differences in its sensitivity to cholesterol desorption suggesting differential roles of lipid rafts/caveolae in muscarinic receptor signalling between species.

Publishing year

2010

Language

English

Pages

142-148

Publication/Series

European Journal of Pharmacology

Volume

634

Document type

Journal article

Publisher

Elsevier

Topic

  • Pharmacology and Toxicology

Status

Published

Research group

  • Molecular Vascular Physiology
  • Airway Inflammation and Immunology
  • Urology

ISBN/ISSN/Other

  • ISSN: 1879-0712