The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Picosecond X-ray diffraction studies of laser-excited acoustic phonons in InSb

Author

  • Jörgen Larsson
  • A Allen
  • PH Bucksbaum
  • RW Falcone
  • A Lindenberg
  • G Naylor
  • T Missalla
  • DA Reis
  • K Scheidt
  • Anders Sjögren
  • P Sondhauss
  • M Wulff
  • JS Wark

Summary, in English

We have employed time-resolved X-ray diffraction with picosecond temporal resolution to measure the time-dependent rocking curves of laser-irradiated asymmetrically cut single InSb crystals. Coherent acoustic phonons were excited in the crystals by irradiation with 800-nm, 100-fs laser pulses at irradiances between 0.25 and 12 mJ/cm(2). The induced time-dependent strain profiles (corresponding to the coherent phonons) were monitored by diffracting collimated, monochromatic pulses Of X-rays from the irradiated crystals. Recording of the diffracted radiation with a fast low-jitter X-ray streak camera resulted in an overall temporal resolution of better than 2 ps. The strain associated with the coherent phonons modifies the rocking curve of the crystal in a time-dependent manner, and the rocking curve is recorded by keeping the angle of incidence of the X-rays upon the crystal fixed, but varying the energy of the incident X-rays around a central energy of 8.453 keV (corresponding to the peak of the rocking curve of the unperturbed crystal). The observed time-dependent diffraction from the irradiated crystals is in reasonable agreement with simulations over a wide range of energies from the unperturbed rocking-curve peak.

Department/s

Publishing year

2002

Language

English

Pages

467-478

Publication/Series

Applied Physics A: Materials Science & Processing

Volume

75

Issue

4

Document type

Journal article

Publisher

Springer

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-0630