The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Digitalization of the product development process at Scania engine assembly

Author

  • Matea Teskera
  • Anna Rosén

Summary, in English

The technology is constantly developing and companies are striving to work towards a more digital approach. Scania CV AB is a world leading Company manufacturing buses and trucks for heavy transport applications. To maintain their competitive position at the market the company has the ambition for the Product development process to become more digitalized. A goal is to implement a more simulation based and drawing free working method.

This project has been carried out at the engine assembly department. The purpose with the thesis was to identify how parts of the product development process could be more digitalized. This included identifying the gap that will occur between the current working process and a more digital approach. Furthermore, it involved finding solutions for the gap and to present possible impacts of a digital working approach.

The initial phase of the thesis was to find a suitable methodology for this type of study. The project proceeded with conducting a literature study to gain deeper insight of the subjects covered. A good foundation was obtained and the empirical study could commence. The data collection in the empirical study was gathered mainly within Scania through interviews, observations and archive analyses. Based on this information an analysis and result was carried out and presented. A gap was identified describing deficient areas in the current digital environment. The working method Model Based Definition (MBD) and a software called Industrial Path Solutions (IPS) are presented as solutions for the gap. Suggestions of how the working process should be modified have been set as prerequisites. Impacts including cost savings, quality improvements, shorter lead times and ergonomic benefits have been submitted.

Department/s

Publishing year

2017

Language

English

Document type

Student publication for Master's degree (two years)

Topic

  • Technology and Engineering

Supervisor

  • Per-Erik Andersson