The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Less flocking behaviour among microorganisms reduces the risk of being eaten

Photo: Unsplash
Photo: Unsplash

When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators. This finding is presented in an international study led from Lund University in Sweden.

When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators. This finding is presented in an international study led from Lund University in Sweden.

Flocking behaviour arises seemingly spontaneously in a group of independent individuals without a clear leader. This behaviour occurs among many types of organisms, from bacteria to mammals and humans. In a new study published in Physical Review Letters, researchers at Lund University examined the flocking behaviour of two different types of microorganism. By studying the backwashes – fluid flows – created around the organisms as they swim, the researchers have been able to find out how they affect each other.

“We have looked at a mixture of two types of swimmers. Those that use 'breaststroke', namely certain types of algae, and those that swim with a 'propeller' behind them, like most bacteria”, says Joakim Stenhammar, chemistry researcher at Lund University.

Previous research has shown that microorganisms with the same swimming technique can sense, and are affected by, each other’s fluid flows. This means they can move in a synchronised way over long length scales several times faster than an individual bacterium can swim.

However, in the new study the Lund researchers could establish through using computer simulations and theoretical models that this flocking behaviour completely disappears when microorganisms with different swimming styles are mixed.

“Their collective fluid flows then behave as though the individuals could not sense each other’s presence. You could say that the microorganisms gain a cloak of invisibility”, says Joakim Stenhammar.

The new study is an important piece of the puzzle in understanding how flocking behaviour works in biological systems. Now the work will continue with the study of increasingly detailed models of how actual microorganisms behave. This will enable comparisons between the theoretical results and experimental observations.

“On a biological level there may be advantages from symbiotic ecosystems in which bacteria and algae live together. The suppression of flocking behaviour may reduce the risk of being eaten, as many aquatic predators sense the fluid flows to localise prey”, concludes Joakim Stenhammar.

Publication in Physical Review Letters:
Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions

Contact:
Joakim Stenhammar
joakim [dot] stenhammar [at] fkem1 [dot] lu [dot] se