The strategic research area eSSENCE supports a new collaborative project involving researchers at Lund University and Umeå University. The project aims to investigate clay materials at an atomistic level and connect this to coarse-grained simulations and experiments, something that was previously lacking.
“The potential areas of application are huge,” says an enthusiastic Marie Skepö, professor of theoretical chemistry at Lund University.
Sustainable, natural and useful
Clay is a sedimentary rock consisting mainly of fine-grained mineral particles less than 0.002 mm in size. It is one of the oldest materials used by humans, and pottery shards have been found that are almost 16 000 years old. As well as being used for pottery, clays have always been an important construction material and are still widely used as bricks, tiles and clinkers. In contact with water, clays develop specific properties depending on the structure of the particles.
“Clay particles look like plates where the flat surface is negatively charged, and the edge is positively charged”, explains Marie Skepö and continues: “When different salts are added in experiments, the particles can form different structures and have unique properties that matter for various applications”.
We are looking for information on how structures are formed; known examples are structures that resemble houses of cards, stacked coins and overlapping coins. Depending on how the clays absorb and retain liquid, they become interesting as barriers for different substances and have been used as surface protection. Clay can be used, for example, as encasing protection for nuclear waste and toxic waste from the mining industry.
Valuable collaboration
A number of methods are used to understand clay and its properties. So far, modelling on the coarse-grained level and experiments have been conducted. Experimentally, synchrotron radiation plays an active role. This is done at CoSAXS, a beamline at the MAX IV Laboratory in Lund, and the European Synchrotron Radiation Facility in Grenoble, France. Access to a world-class beamline facility just a stone’s throw from the office is a huge advantage.
Besides the fact that the measurements are much faster and the data quality is better, it opens up collaboration and knowledge transfer, which is worth its weight in gold. Marie Skepö is also the Vice Director of LINXS, an organisation based in Lund that works to spread knowledge about the use of neutron and synchrotron light facilities, and she emphasises the value of these networks and resources.
“What we have lacked so far are tools to investigate what happens at the atomistic level, and this will be a good complement to the other methods. Bridging the gap between methods, between levels, and different approaches has been an important part of my research career, and here I get to do that," says Marie Skepö.
Another important initiative for Marie Skepö's research is Lund University's investment in large computing capacity in the COSMOS cluster at LUNARC, the University's centre for scientific and technical computing. Better computers and higher capacity accelerate research results and can lead to faster solutions to societal challenges. With the COSMOS remote desktop service (graphical interface) and advanced graphics hardware, you can perform powerful calculations and visualise large amounts of data. This, in turn, can increase the understanding of the phenomena being simulated.
“With the new infrastructure, the process will be about four times faster. What took me four years to simulate for my doctoral thesis 20 years ago can now be done in a couple of months,'” explains Marie Skepö.
Since it can take months to do simulations, it is important to know that you are doing the right things. To make it manageable, one must simplify, but at the same time, it is important to use complex models and conditions that resemble real systems. Access to faster processors will also provide better data.
New areas of use
While technological progress is a great help, Marie Skepö is driven by the urge to solve complex research questions. The ability to think freely and think big can make change possible and benefit society. She highlights the need for researchers to find one another and collaborate to be able to solve large, complex challenges.
“It would be great to figure out how to design materials how we want them. Clay is a good material to use both on and inside the body, and it can also become a carrier of both medicines and wound treatment agents.”
With many years of research in the field, the importance of what she is doing has been acknowledged through further awards from other funding bodies that also see the opportunities for clay as a material. It is undoubtedly an ancient material with a great future.