The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

What’s in an EEM? : molecular signatures associated with dissolved organic fluorescence in boreal Canada

Author

  • Aron Stubbins
  • Jean-François Lapierre
  • Martin Berggren
  • Yves T. Prairie
  • Thorsten Dittmar
  • Paul A. del Giorgio

Summary, in English

Dissolved organic matter (DOM) is a master variable in aquatic systems. Modern fluorescence techniques couple measurements of excitation emission matrix (EEM) spectra and parallel factor analysis (PARAFAC) to determine fluorescent DOM (FDOM) components and DOM quality. However, the molecular signatures associated with PARAFAC components are poorly defined. In the current study we characterized river water samples from boreal Québec, Canada, using EEM/PARAFAC analysis and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman’s correlation of FTICR-MS peak and PARAFAC component relative intensities determined the molecular families associated with 6 PARAFAC components. Molecular families associated with PARAFAC components numbered from 39 to 572 FTICR-MS derived elemental formulas. Detailed molecular properties for each of the classical humic- and protein-like FDOM components are presented. FTICR-MS formulas assigned to PARAFAC components represented 39% of the total number of formulas identified and 59% of total FTICR-MS peak intensities, and included significant numbers compounds that are highly unlikely to fluoresce. Thus, fluorescence measurements offer insight into the biogeochemical cycling of a large proportion of the DOM pool, including a broad suite of unseen molecules that apparently follow the same gradients as FDOM in the environment.

Publishing year

2014

Language

English

Pages

10598-10606

Publication/Series

Environmental Science & Technology

Volume

48

Issue

18

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Geography

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5851