The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Surface behavior of amphiphiles in aqueous solution: a comparison between different pentanol isomers

Author

  • M. -M. Walz
  • C. Caleman
  • J. Werner
  • V. Ekholm
  • D. Lundberg
  • N. L. Prisle
  • Gunnar Öhrwall
  • O. Bjorneholm

Summary, in English

Position isomerism is ubiquitous in atmospheric oxidation reactions. Therefore, we have compared surface-active oxygenated amphiphilic isomers (1- and 3-pentanol) at the aqueous surface with surface- and chemically sensitive X-ray photoelectron spectroscopy (XPS), which reveals information about the surface structure on a molecular level. The experimental data are complemented with molecular dynamics (MD) simulations. A concentration-dependent orientation and solvation of the amphiphiles at the aqueous surface is observed. At bulk concentrations as low as around 100 mM, a monolayer starts to form for both isomers, with the hydroxyl groups pointing towards the bulk water and the alkyl chains pointing towards the vacuum. The monolayer (ML) packing density of 3-pentanol is approx. 70% of the one observed for 1-pentanol, with a molar surface concentration that is approx. 90 times higher than the bulk concentration for both molecules. The molecular area at ML coverage (approximate to 100 mM) was calculated to be around 32 +/- 2 angstrom(2) per molecule for 1-pentanol and around 46 +/- 2 angstrom(2) per molecule for 3-pentanol, which results in a higher surface concentration (molecules per cm(2)) for the linear isomer. In general we conclude therefore that isomers - with comparable surface activities - that have smaller molecular areas will be more abundant at the interface in comparison to isomers with larger molecular areas, which might be of crucial importance for the understanding of key properties of aerosols, such as evaporation and uptake capabilities as well as their reactivity.

Department/s

Publishing year

2015

Language

English

Pages

14036-14044

Publication/Series

Physical Chemistry Chemical Physics

Volume

17

Issue

21

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1463-9084