The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Study of photocurrent generation in InP nanowire-based p(+)-i-n(+) photodetectors

Author

Summary, in English

We report on electrical and optical properties of p(+)-i-n(+)photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p(+)-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p(+)-segment length. Without a p(+)-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p(+)-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.

Publishing year

2014

Language

English

Pages

544-552

Publication/Series

Nano Reseach

Volume

7

Issue

4

Document type

Journal article

Publisher

Springer

Topic

  • Nano Technology
  • Condensed Matter Physics

Keywords

  • nanophotonics
  • nanowires
  • infrared (IR)
  • photodetectors
  • solar cells

Status

Published

ISBN/ISSN/Other

  • ISSN: 1998-0124