The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Valence photoionization and photoelectron-photoion coincidence (PEPICO) study of molecular LiCl and Li2Cl2

Author

  • M. Patanen
  • K. J. Borve
  • J. A. Kettunen
  • Samuli Urpelainen
  • M. Huttula
  • H. Aksela
  • S. Aksela

Summary, in English

Molecular LiCl and Li2Cl2 have been studied in the vapor phase with valence photoelectron and photoelectron-photoion coincidence spectroscopies. These two techniques determine the binding energies in fundamentally different ways. Binding energies obtained from photoelectron spectra are usually taken as the vertical ionization energies of the corresponding electronic states. In cases with several overlapping bands, corresponding to different electronic states, the coincidence measurement can separate the bands if the respective final states fragment differently. This applies well to the monomer case. To facilitate the determination of state-specific ionization energies in the dimeric molecule, a theoretical Franck-Condon analysis has been carried out. Moreover, ab initio coupled-cluster and density-functional-theory calculations have been used to analyze the fragmentation pattern based on asymptotic dissociation energies. The fragmentation pattern is largely common to all the accessible valence-ionized states of the chiller, consistent with rapid conversion to the ionic ground state before fragmentation. However, the highest-lying state of Li2Cl2+, (2)A(g). shows enhanced propensity for Li+ as dissociation product. (C) 2012 Elsevier B.V. All rights reserved.

Department/s

Publishing year

2012

Language

English

Pages

285-293

Publication/Series

Journal of Electron Spectroscopy and Related Phenomena

Volume

185

Issue

8-9

Document type

Journal article

Publisher

Elsevier

Topic

  • Physical Sciences
  • Natural Sciences

Keywords

  • Gas phase
  • LiCl: Li2Cl2
  • Photoelectron spectroscopy
  • PEPICO
  • Fragmentation
  • Ab initio calculations

Status

Published

ISBN/ISSN/Other

  • ISSN: 0368-2048