The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A fine-tuned interaction between the trimeric autotransporter Haemophilus surface fibrils and vitronectin leads to serum resistance and adherence to respiratory epithelial cells.

Author

Summary, in English

Haemophilus influenzae type b (Hib) escapes the host immune system by recruitment of the complement regulator vitronectin that inhibits the formation of the membrane attack complex (MAC) by inhibiting C5b-C7 complex formation and C9 polymerization. We previously reported that Hib acquires vitronectin at the surface by using Haemophilus surface fibrils (Hsf). Here we studied in detail the interaction between Hsf and vitronectin and its role in inhibition of MAC formation and invasion of lung epithelial cells. The vitronectin-binding region of Hsf was defined at the N-terminal comprising amino acids Hsf 429-652. Moreover, the Hsf recognition site on vitronectin consisted of the C-terminal amino acids 352-374. H. influenzae was killed more rapidly in vitronectin-depleted serum when compared to normal human serum (NHS), and an increased MAC deposition was observed at the surface of an Hsf-deficient H. influenzae mutant. In parallel, Hsf-expressing E. coli selectively acquired vitronectin from serum that resulted in significant inhibition of the MAC. Moreover, when vitronectin was bound to Hsf an increased bacterial adherence and internalization of epithelial cells was observed. Taken together, we have defined a fine-tuned protein-protein interaction between Hsf and vitronectin that may contribute to an increased virulence of Hib.

Publishing year

2014

Language

English

Pages

2378-2389

Publication/Series

Infection and Immunity

Volume

82

Issue

6

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Microbiology in the medical area
  • Other Basic Medicine
  • Infectious Medicine

Status

Published

Research group

  • Clinical Microbiology, Malmö
  • Protein Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1098-5522