The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Spinal reflexes provide motor error signals to cerebellar modules - relevance for motor coordination

Author

Summary, in English

The cerebellar olivo-cortico-nuclear network influencing rubro- and corticospinal tracts via the nucleus interpositus anterior (NIA) is one of the most thoroughly characterized mammalian motor systems involved in limb movement control. Recent findings indicate that climbing fibres innervating the NIA system mediate highly integrated sensorimotor information derived from spinal withdrawal reflex modules. In the present paper, the implications of this relationship between spinal and cerebellar neuronal networks for cerebellar sensorimotor processing are put in perspective of the modular organization of the NIA system. Data that should prove useful for computational models of cerebellar sensorimotor processing and motor learning, including functional spino-olivo-cortico-nucleo-spinal connectivity, are reviewed. It is argued that spinal 'pre-processing' of climbing fibre input constitutes a signal conversion from 'sensory' to 'motor' coordinates, providing the cerebellar modules with motor error signals relevant to the action of single limb muscles. Drawing upon their patterns of interconnectivity with spinal reflex modules it is hypothesized how cerebellar modules may adaptively coordinate transitions between agonist and antagonist muscle activity. This mechanism would contribute to the generation of the triphasic EMG patterns that are necessary for smooth acceleration and deceleration of single-joint movements. (C) 2002 Elsevier Science B.V. All rights reserved.

Department/s

Publishing year

2002

Language

English

Pages

152-165

Publication/Series

Brain Research Reviews

Volume

40

Issue

1-3

Document type

Journal article

Publisher

Elsevier

Topic

  • Neurosciences

Status

Published

Research group

  • Neurophysiology

ISBN/ISSN/Other

  • ISSN: 1872-6321