The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Aerodynamic Analysis of a Humid Air Turbine Expander

Author

Summary, in English

This paper presents a reduced-order through-flow expander design for the Humid Air Turbine (HAT) also called the Evaporative Gas Turbine (EvGT). The HAT cycle is an innovative gas turbine cycle that uses humid air to enhance efficiency and power output. This means that there will be a higher water vapour content in the exhaust gases than for a simple cycle. This high water content affects the design of the HAT expander. The design of a wet expander is presented and compared with the results obtained with an expander working under dry exhaust gas conditions. The study was conducted using the reduced-order turbine design tool LUAX-T, developed at Lund University, which is freely available for academic use upon request. LUAX-T allows a flow-path analysis of the expander by specifying important flow-path parameters such as blade root stress and wall-hade angle. The HAT cycle enables cooling flow to the expander under different conditions and design differences for three different options are presented. The first cooling air bleeding point evaluated is the original position, where air is bled from the compressor discharge. The second position is just before the humidification tower, where the air has been cooled down to a low temperature. The third position is just after the humidification tower, where the air has been humidified thus changing its thermodynamic properties. Results in this paper shows that there is a need for an additional turbine stage in a humid expander compared to a dry expander. There are also results indicating that the compressor power can be reduced depending on which cooling strategy is used which can yield an increased total efficiency for a HAT cycle.

Publishing year

2012

Language

English

Pages

217-225

Publication/Series

ASME Turbo Expo 2012: Turbine Technical Conference and Exposition

Volume

3

Document type

Conference paper

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Energy Engineering

Conference name

ASME Turbo Expo 2012: Turbine Technical Conference and Exposition

Conference date

2012-06-11 - 2012-06-15

Conference place

Copenhagen, Denmark

Status

Published