The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Toolbox for enhanced fMRI activation mapping using anatomically adapted graph wavelets

Author

Summary, in English

In fMRI studies with evoked activity, brain activity is detected by voxel-wise GLM tting, followed by statistical hypothesis testing. Statistical parametric mapping (SPM), one of the most popular classical methods, relies upon Gaussian smoothing to deal with the multiple-comparison correction. As an alternative, we have recently introduced a graph-based framework for fMRI brain activation mapping (Behjat, et al., 2015). The graph is designed such that it encodes the topological structure of the gray matter (GM). The approach exploits the spectral graph wavelet transform for the purpose of defining an advanced multi-scale spatial transformation for fMRI data. The use of spatial wavelet transforms has the benefit of providing a compact representation of activation patterns. The framework extends wavelet-based SPM (WSPM), which is a framework that combines wavelet processing of non-smoothed data with voxel-wise statistical testing while guaranteeing strong FP control. Here, we present an implementation of the proposed framework as a user-friendly, SPM-compatible toolbox that deals with multi-subject studies.

Publishing year

2016

Language

English

Document type

Poster

Keywords

  • fMRI, signal processing

Conference name

22nd Annual Meeting of the Organization for Human Brain Mapping (OHBM 2016)

Conference date

2016-06-26 - 2016-06-30

Conference place

Geneva, Switzerland

Status

Published