The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Process Based Large Scale Molecular Dynamic Simulation of a Fuel Cell Catalyst Layer

Author

Summary, in English

In this paper, a large scale molecular dynamic method for reconstruction of the catalyst layers (CLs) in proton exchange membrane fuel cells is developed as a systematic technique to provide an insight into the self-organized phenomena and the microscopic structure. The proposed Coarse-Grained (CG) method is developed and applied to the step formation process, which follows the preparation of the catalyst-coated membranes (CCMs). The fabrication process is mimicked and evaluated in details with consideration of the interactions of material components at a large scale. By choosing three sizes of the unit box, the relevant configurations of the equilibrium states are compared and analyzed. Furthermore, the primary pores of 2-10 nm in the agglomerates mainly consist of the channel space, which acts as the large networks and could be filled with liquid water. Moreover, various physical parameters are predicted and evaluated for four cases. The active Pt surface areas are also calculated by the current model, and then compared with the experimental data available in the literature. Finally, the pair correlation functions are employed to predict the distributions and hydrophobic properties of the components, providing the information on phase segregation and microscopic structure of the CLs. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.028203jes] All rights reserved.

Department/s

Publishing year

2012

Language

English

Pages

251-258

Publication/Series

Journal of the Electrochemical Society

Volume

159

Issue

3

Document type

Journal article

Publisher

Electrochemical Society

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0013-4651