The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The Cyanobacterial Role in the Resistance of Feather Mosses to Decomposition-Toward a New Hypothesis

Author

Summary, in English

Cyanobacteria-plant symbioses play an important role in many ecosystems due to the fixation of atmospheric nitrogen (N) by the cyanobacterial symbiont. The ubiquitous feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria in boreal systems with low N deposition. Here, cyanobacteria fix substantial amounts of N-2 and represent a potential N source. The feather moss appears to be resistant to decomposition, which could be partly a result of toxins produced by cyanobacteria. To assess how cyanobacteria modulated the toxicity of moss, we measured inhibition of bacterial growth. Moss with varying numbers of cyanobacteria was added to soil bacteria to test the inhibition of their growth using the thymidine incorporation technique. Moss could universally inhibit bacterial growth, but moss toxicity did not increase with N-2 fixation rates (numbers of cyanobacteria). Instead, we see evidence for a negative relationship between moss toxicity to bacteria and N-2 fixation, which could be related to the ecological mechanisms that govern the cyanobacteria - moss relationship. We conclude that cyanobacteria associated with moss do not contribute to the resistance to decomposition of moss, and from our results emerges the question as to what type of relationship the moss and cyanobacteria share.

Publishing year

2013

Language

English

Publication/Series

PLoS ONE

Volume

8

Issue

4

Document type

Journal article

Publisher

Public Library of Science (PLoS)

Topic

  • Biological Sciences

Status

Published

Project

  • Effect of environmental factors on fungal and bacterial growth in soil
  • Microbial carbon-use efficiency

Research group

  • Microbial Ecology

ISBN/ISSN/Other

  • ISSN: 1932-6203