The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Impedance spectra of tumour tissue in comparison with normal tissue; a possible clinical application for electrical impedance tomography

Author

Summary, in English

Electrical characteristics of living tissues have been investigated for a long time in the search for further methods to complement the traditional investigations of pathology and physiology. Tumour tissue has been shown to exhibit a larger permittivity and conductivity than normal tissues. This might be associated with the fact that tumour cells have a higher water content and sodium concentration than normal cells, as well as different electrochemical properties of their cell membranes. To our knowledge only a few contributions on this subject have been published. This study describes an additional application on measurements of the complex impedance of tumour and normal tissues, in order to compare the impedance features of the two tissue types. The tissue sample is placed in a measuring cell in which the temperature is controlled. The measuring cell is connected to an impedance meter able to measure the complex impedance in terms of real and imaginary part curves for frequencies from 1.5 kHz to 700 kHz. The four-electrode principle is used with the current injected by the outer electrodes and the voltage difference measured between the inner electrodes. The current can be altered up to 1 mA. The instrument can be calibrated with known resistance and capacitance networks connected to the input of the instrument in order to minimize the measurement errors. The calibration routine uses a polynomial adaptation and can be applied interactively. Measurements performed by the instrument show promising results. Preliminary results show that this method can be extended to a new application for detection of tumour tissue by electrical impedance tomography (EIT).

Publishing year

1996

Language

English

Pages

105-115

Publication/Series

Physiological Measurement

Volume

17

Document type

Journal article

Publisher

IOP Publishing

Topic

  • Radiology, Nuclear Medicine and Medical Imaging
  • Cancer and Oncology

Status

Published

ISBN/ISSN/Other

  • ISSN: 0967-3334