The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Origin of additional mechanical transitions in multicomponent polymeric materials

Author

  • Didier Colombini
  • Frans Maurer

Summary, in English

The viscoelastic properties of several multicomponent materials (including both particulate multipolymeric materials and multilayer polymer blends) were investigated in relation to their microstructures and phase-property dependencies. Theoretical considerations based on mechanical modeling were used to explore the origin of additional mechanical transitions in experimental viscoelastic spectra. The major part of this work was devoted to particulate multicomponent systems, and especially to the further exploration of the characteristics of the so-called micromechanical transition (MMT). Although such an additional phenomenon is clearly explained as a result of a specific interphase, our investigation also provides evidence that the occurrence of a MMT in dynamic mechanical spectra reflects the contribution of the geometrical arrangement into phases of a set of properties of the pure components, rather than a molecular relaxational process within the interfacial area. Finally, on the basis of an equivalent approach, the influence of the geometrical arrangement of phases on the viscoelastic response of multilayer polymer blends was pointed out as a relevant argument to justify the existence of "spurious" additional damping peaks in some experimental dynamic mechanical spectra reported in the literature.

Publishing year

2002

Language

English

Pages

5891-5902

Publication/Series

Macromolecules

Volume

35

Issue

15

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Chemical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0024-9297