The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators

Author

Summary, in English

A three-dimensional CFD numerical simulation is successfully carried out on thermo-hydraulic characteristics of a new smooth wavy fin-and-elliptical tube (SWFET) heat exchanger with three new types of vortex generators (VGs), namely - rectangular trapezoidal winglet (RTW), angle rectangular winglet (ARW) and curved angle rectangular winglet (CARW). Several parameters have been examined in this study. There have a pronounced effect on the thermo-hydraulic performance. In addition the results are analyzed from the viewpoint of the field synergy principle which emphasizes that the reduction of the synergy angle between velocity and fluid temperature gradient is the principal mechanism for enhancement of heat transfer performance. These parameters include: Reynolds number (based on the hydraulic diameter, Re-Dh = 500-3000), geometric shape of VGs, attack angle of VGs (alpha(VG) = 15-75 degrees), placement of VG pairs (up- or/and downstream), tube ellipticity ratio (e = 0.65-1.0) and wavy fin height (H = 0.8-1.6 mm). The results demonstrate that with increasing Reynolds number and wavy fin height, decreasing the tube ellipticity ratio, the heat transfer performance of the SWFET heat exchanger is enhanced. The SWFET heat exchanger with the advantages of using CARW VGs and RTW VGs at smaller and larger attack angles, respectively, presents good thermo-hydraulic performance enhancement. Finally, new correlations are proposed to estimate the values of the average Nusselt number Nu, friction factor f and synergy angle theta based on the Reynolds number, attack angle of VGs, tube ellipticity ratio and wavy fin height. (C) 2015 Elsevier Ltd. All rights reserved.

Department/s

Publishing year

2016

Language

English

Pages

1282-1302

Publication/Series

Applied Energy

Volume

162

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Engineering

Keywords

  • Smooth wavy fin-and-elliptical tube heat exchanger
  • Vortex generators
  • Thermo-hydraulic performance
  • Field synergy principle
  • 3D CFD numerical
  • simulation

Status

Published

ISBN/ISSN/Other

  • ISSN: 1872-9118