The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Crosslinked poly[1-(trimethylsilyl)-1-propyne] membranes: Characterization and pervaporation of aqueous tetrahydrofuran mixtures

Author

  • Stan Claes
  • Pieter Vandezande
  • Steven Mullens
  • Peter Adriaensens
  • Roos Peeters
  • Frans Maurer
  • Marlies K. Van Bael

Summary, in English

To enhance their applicability in a broader range of pervaporation feed streams, poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes have been successfully crosslinked, using a 3,3'-diazido-diphenylsulfone crosslinker. Both photochemical and thermal processes were used to activate the bis(azide) and thus initiate the crosslink reaction. The presented photochemical crosslink process, has an insufficient efficiency, due to the unreacted bis(azide) and the formation of by-products such as carboxylic acids. On the other hand, thermal annealing at temperatures of at least 160 degrees C allows successful crosslinking of FTMSP. In contrast to photochemical crosslinking, the bis(azide) completely decomposes after thermal treatment, rendering the membranes insoluble in solvents that dissolve the uncrosslinked polymer, such as tetrahydrofuran (THF), n-heptane and methyl-tert-butyl ether. All membranes were extensively characterized by means of infrared analysis, solid-state H-1-wideline NMR, positron annihilation lifetime spectroscopy, swelling capacity measurements and pervaporation measurements. These techniques, allowed to gain insight in the crosslink reaction mechanism, crosslinking density of the crosslinked polymer network, changes in the free volume cavity sizes, solvent resistance and pervaporation performance, respectively. The potential of the thermally crosslinked PTMSP membranes in the removal of demanding solvents from aqueous mixtures was illustrated by pervaporation tests on dilute THF/water mixtures. The membrane containing 15 wt.% of crosslinker and treated at 180 degrees C during 1.5 h showed specific permeation rates that are approximately 4 times higher than those of the commercially available polydimethylsiloxane-based membranes, combined with competitive THF/water separation factors. Feed streams containing 10 wt.% THF could be enriched up to 84 wt.% THF in the permeate. (C) 2011 Elsevier B.V. All rights reserved.

Publishing year

2012

Language

English

Pages

459-469

Publication/Series

Journal of Membrane Science

Volume

389

Document type

Journal article

Publisher

Elsevier

Topic

  • Chemical Sciences

Keywords

  • PTMSP
  • Swelling
  • Crosslinking
  • 3 '-Diazido-diphenylsulfone
  • 3
  • Liquid separation

Status

Published

ISBN/ISSN/Other

  • ISSN: 0376-7388