The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

New mechanism for amino acid influx into human epidermal Langerhans cells: L-dopa/proton counter-transport system.

Author

Summary, in English

We have characterized a stereospecific transport mechanism for L-dopa into human epidermal Langerhans cells (LCs). It is different from any other amino acid transport system. It is highly concentrative, largely pH-independent, and independent of exogenous Na+, glucose and oxygen, and fuelled by a renewable intracellular energy source inhibited by iodoacetate but not by arsenate. We propose that the mechanism is a unidirectional L-dopa/proton counter-transport system. We have recently demonstrated anaerobic glycolysis in human epidermis, which substantiates the need of proton pumps for resident LCs. The findings prompt a re-evaluation of the profound changes LCs undergo when exposed to oxygen in aerobic culture. L-dopa is not metabolized by LCs but can rapidly be dislocated to the intercellular space by certain extracellular amino acids, i.e. LCs can profit by L-dopa in a dualistic way, altogether a remarkable biological phenomenon.

Publishing year

2003

Language

English

Pages

602-609

Publication/Series

Experimental Dermatology

Volume

12

Issue

5

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Dermatology and Venereal Diseases

Status

Published

ISBN/ISSN/Other

  • ISSN: 0906-6705