The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A somatic mutation of GFI1B identified in leukemia alters cell fate via a SPI1 (PU.1) centered genetic regulatory network.

Author

Summary, in English

We identify a mutation (D262N) in the erythroid-affiliated transcriptional repressor GFI1B, in an acute myeloid leukemia (AML) patient with antecedent myelodysplastic syndrome (MDS). The GFI1B-D262N mutant functionally antagonizes the transcriptional activity of wild-type GFI1B. GFI1B-D262N promoted myelomonocytic versus erythroid output from primary human hematopoietic precursors and enhanced cell survival of both normal and MDS derived precursors. Re-analysis of AML transcriptome data identifies a distinct group of patients in whom expression of wild-type GFI1B and SPI1 (PU.1) have an inverse pattern. In delineating this GFI1B-SPI1 relationship we show that (i) SPI1 is a direct target of GFI1B, (ii) expression of GFI1B-D262N produces elevated expression of SPI1, and (iii) SPI1-knockdown restores balanced lineage output from GFI1B-D262N-expressing precursors. These results table the SPI1-GFI1B transcriptional network as an important regulatory axis in AML as well as in the development of erythroid versus myelomonocytic cell fate.

Publishing year

2016-02-03

Language

English

Pages

277-286

Publication/Series

Developmental Biology

Volume

411

Issue

2

Document type

Journal article

Publisher

Elsevier

Topic

  • Medical Genetics
  • Bioinformatics and Systems Biology
  • Other Physics Topics

Status

Published

Project

  • Computational Science for Health and Environment

ISBN/ISSN/Other

  • ISSN: 1095-564X