The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Intraspecific variation in resistance of frog eggs to fungal infection

Author

Summary, in English

Documenting sources of variation in host viability at pathogen exposure within and among populations is an important task in order to predict host-pathogen evolutionary dynamics. In the present study, we investigated family and population variation in the degree of embryonic infection of the pathogenic fungus Saprolegnia spp., by infecting moor frog (Rana arvalis) eggs from six populations and exposing them to two different temperatures. We found a significant family effect on the degree of Saprolegnia-infection of eggs and embryos, suggesting that there is genetic variation in resistance among embryos, or variation among females in some aspect of maternally induced resistance. Furthermore, infection level differed significantly between temperatures, with most families having more infected eggs in the relatively colder temperature. However, eggs and embryos from the different populations showed different degrees of Saprolegnia-infection in the two temperatures, i.e., there was a significant population x temperature interaction on the proportion of infected eggs. Thus, the degree of Saprolegnia-infection is sensitive to variation at the level of the family, population and environmental conditions, suggesting that responses to fungal outbreaks will vary geographically and will be difficult to predict.

Publishing year

2008

Language

English

Pages

193-201

Publication/Series

Evolutionary Ecology

Volume

22

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1573-8477