The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Regular and singular β-blocking of difference corrected multistep methods for nonstiff index-2 DAEs

Author

Summary, in English

There are several approaches to using nonstiff implicit linear multistep methods for solving certain classes of semi-explicit index 2 DAEs. Using β-blocked discretizations (Arevalo et al., 1996) Adams-Moulton methods up to order 4 and difference corrected BDF (Soderlind, 1989) methods up to order 7 can be stabilized. As no extra matrix computations are required, this approach is an alternative to projection methods.Here we examine some variants of β-blocking. We interpret earlier results as regular β-blocking and then develop singular β-blocking. In this nongeneric case the stabilized formula is explicit, although the discretization of the DAE as a whole is implicit. We investigate which methods can be stabilized in a broad class of implicit methods based on the BDF ρ polynomials. The class contains the BDF, Adams-Moulton and difference corrected BDF methods as well as other high order methods with small error constants. The stabilizing difference operator<space>τ is selected by a minimax criterion for the moduli of the zeros of σ+τ. The class of explicit methods suitable as β-blocked methods is investigated. With singular β-blocking, Adams-Moulton methods up to order 7 can be stabilized with the stabilized method corresponding to the Adams-Bashforth methods.

Topic

  • Mathematics

Keywords

  • Differential algebraic equations (DAE)
  • β-blocked methods
  • Multistep methods
  • Partitioned methods
  • Half-explicit methods
  • Difference corrected multistep methods

Status

Published

Research group

  • Numerical Analysis

ISBN/ISSN/Other

  • ISSN: 0168-9274