The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes

Author

  • Tomas Svensson
  • E. Adolfsson
  • M. Burresi
  • R. Savo
  • Can Xu
  • D. S. Wiersma
  • Sune Svanberg

Summary, in English

Wall collision broadening of absorption lines of gases confined in porous media is a recently opened domain of high-resolution spectroscopy. Here, we present an experimental investigation of its application for pore size assessment. We report on the manufacturing of nanoporous zirconia ceramics with well-defined pore sizes fine-tuned from 50 to 150 nm. The resulting pore structure is characterized using mercury intrusion porosimetry, and the optical properties of these strongly scattering materials are measured using femtosecond photon time-of-flight spectroscopy (transport mean free paths found to be tuned from 2.3 to 1.2 mu m as the pore size increase). Wall collision line broadening is studied by performing near-infrared (760 nm) high-resolution diode laser spectroscopy of confined oxygen molecules. A simple method for quantitative estimation of the pore size is outlined and shown to produce results in agreement with mercury intrusion porosimetry. At the same time, the need for improved understanding of wall collision broadening is emphasized.

Department/s

Publishing year

2013

Language

English

Pages

147-154

Publication/Series

Applied Physics B

Volume

110

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0946-2171