The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Defining targets for complement components C4b and C3b on the pathogenic neisseriae

Author

  • Lisa A. Lewis
  • Sanjay Ram
  • Alpana Prasad
  • Sunita Gulati
  • Silke Getzlaff
  • Anna Blom
  • Ulrich Vogel
  • Peter A. Rice

Summary, in English

Complement is a key arm of the innate immune defenses against the pathogenic neisseriae. We previously identified lipooligosaccharide on Neisseria meningitidis as an acceptor for complement C4b. Little is known about other neisserial targets for complement proteins C3 and C4, which covalently attach to bacterial surfaces and initiate opsonization and killing. In this study we demonstrate that N. gonorrhoeae porin (Por) 1B selectively binds C4b via amide linkages and C3b via ester linkages. Using strains expressing hybrid Por1A/1B molecules, a region spanned by loops 4 and 5 of Por1B was identified as the preferred binding site for C4b. We also identified the opacity protein (Opa), a major adhesin of pathogenic neisseriae, as a target for C4b and C3b on both N. meningitidis and N. gonorrhoeae. Using N. gonorrhoeae variants that predominately expressed individual Opa proteins, we found that all expressed Opa proteins tested (A, B, C, D, E, F and I) bound C4b and C3b via amide and ester linkages, respectively. Amide linkages with Por1B and Opa were confirmed using serum containing only the C4A isoform, which exclusively forms amide linkages with targets. While monomers and heterodimers of C4Ab were detected on bacterial targets, C4Bb appeared to preferentially participate in heterodimer (C5 convertase) formation. Our data provide another explanation for enhanced serum sensitivity of Por1B-bearing gonococci. The binding of C3b and C4b to Opa provide a rationale for the recovery of predominantly 'transparent' (Opa negative) neisserial isolates from persons with invasive disease where the bacteria encounter high levels of complement.

Publishing year

2008

Language

English

Pages

339-350

Publication/Series

Infection and Immunity

Volume

76

Issue

1

Document type

Journal article

Publisher

American Society for Microbiology

Topic

  • Other Basic Medicine

Status

Published

Research group

  • Protein Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1098-5522