The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

In vivo gene delivery for development of mammalian models for Parkinson's disease

Author

Summary, in English

During the last decade, identification of the genes involved in familial forms of Parkinson's disease (PD) has advanced our understanding of the mechanisms underlying the development of different aspects of PD. However the available animal models still remain as the main limiting factor for the development of neuroprotective therapies that can halt the progression of the disease, through which we wish to provide a better quality of life for the PD patients. Here, we review the recently developed animal models based on overexpression of PD-associated genes using recombinant viral vectors. Recombinant adeno-associated viral vectors, in particular, have been very useful in targeting the nigral dopamine neurons both in the rodent and the primate brain. In order to provide insights into the establishment of these models in the laboratory, we will not only give an overview of the results from these studies but also cover practical issues related to the production and handling of the viral vectors, which are critical for the successful application of this approach.

Publishing year

2008

Language

English

Pages

89-100

Publication/Series

Experimental Neurology

Volume

209

Issue

1

Document type

Journal article review

Publisher

Elsevier

Topic

  • Neurology

Status

Published

Research group

  • Brain Repair and Imaging in Neural Systems (BRAINS)

ISBN/ISSN/Other

  • ISSN: 0014-4886