The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Context dependence of protein secondary structure formation: the three-dimensional structure and stability of a hybrid between chymotrypsin inhibitor 2 and helix E from subtilisin Carlsberg

Author

  • Peter Osmark
  • Poul Sorensen
  • Flemming M Poulsen

Summary, in English

The loop region of chymotrypsin inhibitor 2 from barley has been employed as a scaffold for testing the intrinsic propensity of a peptide fragment to form a secondary structure. The helix formation of the nine amino acid residue segment Lys-Gln- Ala-Val- Asp- Asn- Ala-Tyr-Ala of helix E from subtilisin Carlsberg has been studied by the construction of a hybrid consisting of chymotrypsin inhibitor 2 (CI2) where part of the active loop has been replaced by the nonapeptide. An expression system for a truncated form of C12 where the 19 structureless residues of the N-terminus have been removed and Leu20 replaced

by methionyl was constructed from the entire 83-residue wild-type C12 gene by polymerase chain reaction

methodology. The gene encoding the hybrid was constructed from the truncated inhibitor gene. The stability of the truncated inhibitor and of the hybrid toward guanidinium chloride denaturation was examined. From these measurements, the energy of unfolding in pure water was extrapolated to 30.5 1.0 kJ/mol for the truncated inhibitor and 10.9 f 0.3 kJ/mol for the hybrid. These energies show that the stability of C12 is unaffected by the N-terminal truncation but severely decreased by the loop mutations. The three-dimensional structure of the hybrid protein has been determined in solution by nuclear magnetic

resonance spectroscopy using 893 distance restraints and 84 torsional angle restraints. The average rootmean-square deviation (rmsd) of 15 structures compared to their geometrical average was 0.8 f 0.2 A for heavy backbone atoms and 1.3 * 0.2 A for all heavy atoms. The inserted peptide segment does not form an a-helix in the new structural context whereas the structure of the C12 scaffold turns out to be amazingly conserved.

Publishing year

1993

Language

English

Pages

11007-11014

Publication/Series

Biochemistry

Volume

32

Issue

41

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biochemistry and Molecular Biology

Status

Published

Research group

  • Molecular Endocrinology

ISBN/ISSN/Other

  • ISSN: 0006-2960