The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

On the dependence of the laser-induced incandescence (LII) signal on soot volume fraction for variations in particle size

Author

Summary, in English

“The laser-induced incandescence (LII) signal is proportional to soot volume fraction” is an often used statement in scientific papers, and it has – within experimental uncertainties – been validated in comparisons with other diagnostic techniques in several investigations. In 1984 it was shown theoretically in a paper by Melton that there is a deviation from this

statement in that the presence of larger particles leads to some overestimation of soot volume fractions. In the present paper we present a detailed theoretical investigation of how the soot particle size influences the relationship between LII signal and soot volume fraction for different experimental conditions. Several

parameters have been varied; detection wavelength, time and delay of detection gate, ambient gas temperature and pressure, laser fluence, level of aggregation and spatial profile. Based on these results we are able, firstly, to understand how experimental conditions should be chosen in order to minimize the errors introduced when assuming a linear dependence between the signal and volume fraction and secondly, to obtain knowledge on how to use this information to obtain more accurate soot volume fraction data if the particle size is known.

Department/s

Publishing year

2008

Language

English

Pages

109-125

Publication/Series

Applied Physics B: Lasers and Optics

Volume

90

Issue

1

Document type

Journal article

Publisher

Springer

Topic

  • Atom and Molecular Physics and Optics

Keywords

  • Laser-induced incandescence Soot diagnostics Heat and mass transfer model

Status

Published