The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Protonation of the proximal histidine ligand in heme peroxidases.

Author

Summary, in English

The heme peroxidases have a histidine group as the axial ligand of iron. This ligand forms a hydrogen bond to an aspartate carboxylate group by the other nitrogen atom in the side chain. The aspartate is not present in the globins and it has been suggested that it gives an imidazolate character to the histidine ligand. Quantum chemical calculations have indicated that the properties of the heme site strongly depend on the position of the proton in this hydrogen bond. Therefore, we have studied the location of this proton in all intermediates in the reaction mechanism, using a set of different quantum mechanical and combined experimental and computational methods. Quantum refinements of a crystal structure of the resting FeIII state in yeast cytochrome c peroxidase show that the geometric differences of the two states are so small that it cannot be unambiguously decided where the proton is in the crystal structure. Vacuum calculations indicate that the position of the proton is sensitive to the surroundings and to the side chains of the porphyrin ring. Combined quantum and molecular mechanics (QM/MM) calculations indicate that the proton prefers to reside on the His ligand in all states in the reaction mechanism of the peroxidases. QM/MM free energy perturbations confirm these results, but reduce the energy difference between the two states to 12-44 kJ/mol.

Publishing year

2008

Language

English

Pages

2501-2510

Publication/Series

The Journal of Physical Chemistry Part B

Volume

112

Issue

8

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Theoretical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5207