The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Analysis of a high frequency and wide bandwidth active polyphase filter based on CMOS inverters

Author

Summary, in English

An active polyphase filter capable of high frequency quadrature signal generation has been analyzed. The resistors of the classical passive polyphase filter have been replaced by transconductors, CMOS inverters [1,2]. A three-stage 0.13 um CMOS active polyphase filter has been designed. Simulations with a differential input signal show a quadrature error less than 1◦ for the full stable input voltage range for frequencies from 6 GHz to 14 GHz. Phase errors in the differential input signal are suppressed at least 3 times at the output. Corner simulations at 10 GHz show a maximum phase error of 3◦ with both n- and pMOS slow, in all other cases the error is less than 0.75◦. The three-stage filter consumes 34 mA from a 1.2 V supply. To investigate the robustness of the filter to changes in inverter delay, an inverter model was implemented in Verilog-A. Linear cin and gin were used, whereas gm, cout, and gout were non-linear. It was found that the filter could tolerate substantial delays. Up to 40◦ phase shift resulted in less than 1.5◦ quadrature phase error at the output.

Publishing year

2009

Language

English

Pages

243-255

Publication/Series

Analog Integrated Circuits and Signal Processing

Volume

59

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Electrical Engineering, Electronic Engineering, Information Engineering

Keywords

  • RF
  • Active polyphase filter
  • Quadrature generation
  • CMOS

Status

Published

Research group

  • Elektronikkonstruktion
  • Analog RF

ISBN/ISSN/Other

  • ISSN: 0925-1030