The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effect of Substrate Chemistry on the Bottom-Up Fabrication of Graphene Nanoribbons: Combined Core-Level Spectroscopy and STM Study

Author

Summary, in English

Atomically precise graphene nanoribbons (GNRs) can be fabricated via thermally induced polymerization of halogen containing molecular precursors on metal surfaces. In this paper the effect of substrate reactivity on the growth and structure of armchair GNRs (AGNRs) grown on inert Au(111) and active Cu(111) surfaces has been systematically studied by a combination of core-level X-ray spectroscopies and scanning tunneling microscopy. It is demonstrated that the activation threshold for the dehalogenation process decreases with increasing catalytic activity of the substrate. At room temperature the 10,10'-dibromo-9,9'-bianthracene (DBBA) precursor molecules on Au(111) remain intact, while on Cu(111) a complete surface-assisted dehalogenation takes place. Dehalogenation of precursor molecules on Au(111) only starts at around 80 degrees C and completes at 200 degrees C, leading to the formation of linear polymer chains. On Cu(111) tilted polymer chains appear readily at room temperature or slightly elevated temperatures. Annealing of the DBBA/Cu(111) above 100 degrees C leads to intramolecular cyclodehydrogenation and formation of flat AGNRs at 200 degrees C, while on the Au(111) surface the formation of GNRs takes place only at around 400 degrees C. In STM, nanoribbons have significantly reduced apparent height on Cu(111) as compared to Au(111), 70 +/- 11 pm versus 172 +/- 14 pm, independently of the bias voltage. Moreover, an alignment of GNRs along low-index crystallographic directions of the substrate is evident for Cu(111), while on Au(111) it is more random. Elevating the Cu(111) substrate temperature above 400 degrees C results in a dehydrogenation and subsequent decomposition of GNRs; at 750 degrees C the dehydrogenated carbon species self-organize in graphene islands. In general, our data provide evidence for a significant influence of substrate reactivity on the growth dynamics of GNRs.

Department/s

Publishing year

2014

Language

English

Pages

12532-12540

Publication/Series

Journal of Physical Chemistry C

Volume

118

Issue

23

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447