The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of 2,3-butanedione monoxime on activation of contraction and crossbridge kinetics in intact and chemically skinned smooth muscle fibres from guinea pig taenia coli

Author

Summary, in English

The effects of 2,3-butanedione monoxime (BDM) were studied in smooth muscle fibres from guinea pig taenia coli. In intact muscle, active force during contractions induced by high-K+ was inhibited by about 10% in 1 mM BDM and by approximately 70% in 10 mM BDM. Intracellular [Ca2+] during contraction, measured with the fura-2 technique, was reduced in the presence of BDM. The reduction in force and [Ca2+] in the presence of 1 and 10 mM BDM could be reproduced by reduction in extracellular Ca2+, suggesting that BDM influences the Ca2+ entry or release. In skinned muscle preparations, BDM decreased the Ca2+ sensitivity of active force. This change could be explained by a decreased level of myosin light chain phosphorylation. In fibres maximally activated by thiophosphorylation, the effect of BDM on force occurred at higher concentrations; 10 mM gave no reduction of force and 60 mM 15% reduction. The maximal shortening velocity (Vmax) and force were unaffected by 30 mM BDM in thiophosphorylated muscle and decreased almost in parallel in Ca(2+)-activated contractions. The present results suggest that BDM inhibits myosin light chain phosphorylation, directly decreases force generation at the crossbridge level and inhibits the Ca2+ translocation in smooth muscle. The effect on force in skinned fibres is observed at higher BDM concentrations than those reported to be required for inhibition of force in striated muscle. The inhibition of force in intact smooth muscle could be explained by an influence on Ca2+ translocation.

Publishing year

1993

Language

English

Pages

186-194

Publication/Series

Journal of Muscle Research and Cell Motility

Volume

14

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Physiology
  • Pharmacology and Toxicology
  • Medicinal Chemistry

Status

Published

Research group

  • Vascular Physiology

ISBN/ISSN/Other

  • ISSN: 0142-4319