The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Relative fatality risk curve to describe the effect of change in the impact speed on fatality risk of pedestrians struck by a motor vehicle.

Author

Summary, in English

Models describing the relation between impact speed and fatality risk for pedestrians struck by a motor vehicle have frequently been used by practitioners and scientists in applying an S curve to visualize the importance of speed for the chance of survival. Recent studies have suggested that these risk curves are biased and do not give representative risk values. These studies present new fatality risk curves that show much lower risks of fatality than before, which has caused confusion and misconceptions about how these new curves should be interpreted, and how this should affect speed management policy. The aim here is to deepen the understanding of the implications this new knowledge has for urban speed policies by analyzing (1) what the most reliable knowledge is for this relation today and what limitations it has, (2) how these risk curves are interpreted today, and what limitations this interpretation has and (3) what the risk curves say about the importance of speed and speed changes. This paper proposes an additional tool, the relative fatality risk curve, to help prevent misconceptions. The proposed relative risk ratios and curves show that, even though the most recent results indicate that the risk is lower than assumed by the older models, the fatality risk is still as sensitive to speed changes as before.

Publishing year

2014

Language

English

Pages

143-152

Publication/Series

Accident Analysis and Prevention

Volume

62

Document type

Journal article

Publisher

Elsevier

Topic

  • Infrastructure Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1879-2057