The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Disposable Soma Theory and the Evolution of Maternal Effects on Ageing.

Author

Summary, in English

Maternal effects are ubiquitous in nature and affect a wide range of offspring phenotypes. Recent research suggests that maternal effects also contribute to ageing, but the theoretical basis for these observations is poorly understood. Here we develop a simple model to derive expectations for (i) if maternal effects on ageing evolve; (ii) the strength of maternal effects on ageing relative to direct environmental effects; and (iii) the predicted relationships between environmental quality, maternal age and offspring lifespan. Our model is based on the disposable soma theory of ageing, and the key assumption is thus that mothers trade off their own somatic maintenance against investment in offspring. This trade-off affects the biological age of offspring at birth in terms of accumulated damage, as indicated by biomarkers such as oxidative stress or telomere length. We find that the optimal allocation between investment in maternal somatic investment and investment in offspring results in old mothers and mothers with low resource availability producing offspring with reduced life span. Furthermore, the effects are interactive, such that the strongest maternal age effects on offspring lifespan are found under low resource availability. These findings are broadly consistent with results from laboratory studies investigating the onset and rate of ageing and field studies examining maternal effects on ageing in the wild.

Publishing year

2016

Language

English

Publication/Series

PLoS ONE

Volume

11

Issue

1

Document type

Journal article

Publisher

Public Library of Science (PLoS)

Topic

  • Evolutionary Biology

Status

Published

Research group

  • Evolutionary Biology

ISBN/ISSN/Other

  • ISSN: 1932-6203