The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A consistent modelling methodology for secondary settling tanks in wastewater treatment

Author

Summary, in English

The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to

date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the

biological reactor yielding an ODE solver, and then to the solideliquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models.

Department/s

Publishing year

2011

Language

English

Pages

2247-2260

Publication/Series

Water Research

Volume

45

Issue

6

Document type

Journal article

Publisher

Elsevier

Topic

  • Computational Mathematics
  • Mathematics
  • Chemical Engineering
  • Water Engineering
  • Water Treatment

Keywords

  • Thickener
  • Clarifier
  • Continuous sedimentation
  • Partial differential
  • equation
  • Simulation model
  • Numerical method

Status

Published

Research group

  • Partial differential equations
  • Numerical Analysis

ISBN/ISSN/Other

  • ISSN: 1879-2448