The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Scaling analyses of high-resolution dye tracer experiments

Author

Summary, in English

Four unsaturated solute transport experiments with different water fluxes were conducted in a Hele-Shaw cell filled with uniform sand. The transport of the dye tracer used was recorded with a camera and the dye concentration was calculated using image analysis. The concentrations fields were analysed in terms of time moments and converted into vertical solute transport velocity V. Both mean value and standard deviation of V increased with water flux. The autocorrelation function exhibited a linear decrease for short lags. The pronounced variability of V suggested a description in terms of scaling properties, and a scaling regime was indeed found from the resolution 1.8 mm up to almost 0.1 m. The upper limit corresponds roughly to a characteristic scale of fingering structures seen in the dye concentration images. Indications of a second scaling regime at larger scales were found. In the small-scale scaling regime, the power spectrum exponent beta was generally slightly below 1 and the intermittency parameter C-1 was on average 0.00025. The moment scaling K-q functions were convex, implying a multiscaling process.

Publishing year

2008

Language

English

Pages

1286-1299

Publication/Series

Hydrological Sciences Journal

Volume

53

Issue

6

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Water Engineering

Keywords

  • scaling analysis
  • solute transport
  • dye tracer
  • power spectrum

Status

Published

ISBN/ISSN/Other

  • ISSN: 0262-6667