The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Multifunctional specificity of the protein C/activated protein C Gla domain

Author

  • Roger J. S. Preston
  • Eva Ajzner
  • Cristina Razzari
  • Stalo Karageorgi
  • Sonia Dua
  • Björn Dahlbäck
  • David A. Lane

Summary, in English

Activated protein C (APC) has potent anticoagulant and antiinflammatory properties that are mediated in part by its interactions with its cofactor protein S and the endothelial cell protein C receptor (EPCR). The protein C/APC Gla domain is implicated in both interactions. We sought to identify how the protein C Gla domain enables specific protein-protein interactions in addition to its conserved role in phospholipid binding. The human prothrombin Gla domain, which cannot bind EPCR or support protein S cofactor activity, has 22/45 residues that are not shared with the human protein C Gla domain. We hypothesized that the unique protein C/APC Gla domain residues were responsible for mediating the specific interactions. To assess this, we generated 13 recombinant protein C/APC variants incorporating the prothrombin residue substitutions. Despite anticoagulant activity similar to wild-type APC in the absence of protein S, APC variants APC(PT33 -39) (N33S/V34S/D35T/D36A/L38D/A39V) and APC(PT36/38/39) (D36A/L38D/A39V) were not stimulated by protein S, whereas APC(PT35/36) (D35T/D36A) exhibited reduced protein S sensitivity. Moreover, PC(PT8/10) (L8V/H10K) displayed negligible EPCR affinity, despite normal binding to anionic phospholipid vesicles and factor Va proteolysis in the presence and absence of protein S. A single residue variant, PC(PT8), also failed to bind EPCR. Factor VIIa, which also possesses Leu-8, bound soluble EPCR with similar affinity to wild-type protein C, collectively confirming Leu-8 as the critical residue for EPCR recognition. These results reveal the specific Gla domain residues responsible for mediating protein C/APC molecular recognition with both its cofactor and receptor and further illustrate the multifunctional potential of Gla domains.

Publishing year

2006

Language

English

Pages

28850-28857

Publication/Series

Journal of Biological Chemistry

Volume

281

Issue

39

Document type

Journal article

Publisher

American Society for Biochemistry and Molecular Biology

Topic

  • Medicinal Chemistry

Status

Published

Research group

  • Clinical Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1083-351X