The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Transport Phenomena in Fires

Author

Summary, in English

Controlled fires are beneficial for the generation of heat and power while uncontrolled fires, like fire incidents and wildfires, are detrimental and can cause enormous material damage and human suffering. Transport phenomena such as buoyant flow, momentum, convective heat and mass transfer as well as chemical reactions between combustible species and oxygen from the surrounding air play important turbulent mixing are important to the mechanism of flame heat transfer that govern fire release rates. The mechanisms of ignition, flame spread, steady burning flame extinction and smoke transport all need to be considered in fire modelling. In addition, temperature-dependent properties are important factors for consideration. For uncontrolled fires, the evolution in time is of great concern.

This edited book presents the state of the art of modelling and numerical simulation of the important transport phenomena in fires. It describes how computational procedures can be used in analysis and design of fire protection and fire safety. Computational fluid dynamics, turbulence modelling, combustion, soot formation, thermal radiation modelling are demonstrated and applied to pool fires, flame spread, wildfires, fires in buildings and other examples.



All of the chapters follow a unified outline and presentation to aid accessibility and the book provides invaluable information for both graduate researchers and R&D engineers in industry and consultancy.

Department/s

Publishing year

2007

Language

English

Publication/Series

Developments in Heat Transfer,

Document type

Book

Publisher

WIT Press

Topic

  • Energy Engineering

Status

Inpress

Research group

  • heat transfer

ISBN/ISSN/Other

  • ISBN: 978-184564-160-3