The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

LII-lidar: range-resolved backward picosecond laser-induced incandescence

Author

Summary, in English

A novel concept for remote in situ detection of soot emissions by a combination of laser-induced incandescence (LII) and light detection and ranging (lidar) is presented. A lidar setup based on a picosecond Nd:YAG laser and time-resolved signal detection in the backward direction was used for LII measurements in sooty premixed ethylene-air flames. Measurements of LII-lidar signal versus laser fluence and flame equivalence ratio showed good qualitative agreement with data reported in literature. The LII-lidar signal showed a decay consisting of two components, with lifetimes of typically 20 and 70 ns, attributed to soot sublimation and conductive cooling, respectively. Theoretical considerations and analysis of the LII-lidar signal showed that the derivative was proportional to the maximum value, which is an established measure of soot volume fraction. Utilizing this, differentiation of LII-lidar data gave profiles representing soot volume fraction with a range resolution of similar to 16 cm along the laser beam propagation axis. The accuracy of the evaluated LII-profiles was confirmed by comparison with LII-data measured simultaneously employing conventional right-angle detection. Thus, LII-lidar provides range-resolved single-ended detection, resourceful when optical access is restricted, extending the LII technique and opening up new possibilities for laser-based diagnostics of soot and other carbonaceous particles.

Department/s

Publishing year

2014

Language

English

Pages

111-121

Publication/Series

Applied Physics B

Volume

115

Issue

1

Document type

Journal article

Publisher

Springer

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0946-2171