The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy

Author

Summary, in English

A novel approach to the visualisation of soot is presented. It relies on a combination of laser-induced soot vapourisation and consecutive polarisation spectroscopy. Upon soot vapourisation, molecular fragments (for example, C-2) emerge, and may serve as effective tracers for soot. In this study we demonstrate that saturated polarisation spectroscopy on photoinduced C-2 can be exploited for soot detection. Signal maps featuring high signal-to-noise ratios were readily recorded in ethyne-rich flames and any spurious background, for example, caused by Rayleigh scattering, was successfully suppressed by means of spatial filtering. Additionally, investigations were carried out addressing how the attained signals correlate with local soot volumne fractions. For this purpose, height profiles of C-2 number densities inferred from the polarisation spectroscopy signal maps were compared with profiles of the soot volumne fraction inferred from measurements with laser-induced incandescence. For low soot volumne fractions, the shapes of the height profiles from our approach agree rather well with the latter; they do not agree for higher soot volumne fractions. Further investigation is required to resolve this discrepancy. Scattering from particles in the Mie scattering range may hamper the application of this approach, and avenues are suggested for extending the applicability of the approach presented to large soot particles.

Department/s

Publishing year

2003

Language

English

Pages

447-454

Publication/Series

Applied Physics B

Volume

77

Issue

4

Document type

Journal article

Publisher

Springer

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0946-2171