The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Overexpression of α-synuclein in oligodendrocytes does not increase susceptibility to focal striatal excitotoxicity.

Author

  • Daniela Kuzdas-Wood
  • Lisa Fellner
  • Melanie Premstaller
  • Carlijn Borm
  • Bastiaan Bloem
  • Deniz Kirik
  • Gregor K Wenning
  • Nadia Stefanova

Summary, in English

Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disease characterized by α-synuclein (α-syn) positive oligodendroglial cytoplasmic inclusions. The latter are associated with a neuronal multisystem neurodegeneration targeting central autonomic, olivopontocerebellar and striatonigral pathways, however the underlying mechanisms of neuronal cell death are poorly understood. Previous experiments have shown that oligodendroglial α-syn pathology increases the susceptibility to mitochondrial stress and proteasomal dysfunction leading to enhanced MSA-like neurodegeneration. Here we analyzed whether oligodendroglial α-syn overexpression in a transgenic mouse model of MSA synergistically interacts with focal neuronal excitotoxic damage generated by a striatal injection of quinolinic acid (QA) to affect the degree of striatal neuronal loss.

Topic

  • Neurosciences

Status

Published

Research group

  • Brain Repair and Imaging in Neural Systems (BRAINS)

ISBN/ISSN/Other

  • ISSN: 1471-2202