The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions.

Author

Summary, in English

Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m(2). We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m(2), as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m(2), spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision.

Publishing year

2014

Language

English

Pages

197-207

Publication/Series

Journal of Comparative Physiology A

Volume

200

Issue

3

Document type

Journal article

Publisher

Springer

Topic

  • Zoology
  • Philosophy

Keywords

  • Single cone
  • Spectral sensitivity
  • Chromatic mechanisms
  • Double cone
  • Achromatic mechanisms

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1432-1351