The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Numerical and experimental study of the slot film cooling jet with various angles

Author

Summary, in English

Numerical simulations coupled with LDV experiments were carried out to investigate a slot jet issued into a cross flow, which is relevant in the film cooling of gas turbine combustors. The film cooling fluid injection from slots or holes into a cross-flow produces highly complicated flow fields. In this paper, the time-averaged Navier-Stokes equations were solved on a collocated body-fitted grid system with the V2F turbulence model. The fluid flow and turbulent Reynolds stress fields were compared with the LDV experiments for three jet angles, namely, 30-deg, 60-deg, and 90-deg, and the jet blowing ratio is ranging from 2 to 9. Good agreement was obtained. Therefore, the present solution procedure was also adopted to calculations of 15-deg and 40-deg jets. In addition, the temperature fields, which were difficult to measure by experimental methods, were also computed with a simple eddy diffusivity model to obtain the film cooling effectiveness which was used for evaluation of the various jet-cross-flow arrangements. The results show that a recirculation bubble downstream the jet exists for jet angles larger than 40-deg, but it vanishes when the angle is less than 30-deg, which is in good accordance with the experiments. The blowing ratio has a large effect on the size of the recirculation bubble, and consequently on the film cooling effectiveness. In addition, the influence of boundary conditions for the jet and cross-flow are also addressed in the paper.

Department/s

Publishing year

2003

Language

English

Pages

845-856

Publication/Series

Proceedings of the ASME Summer Heat Transfer Conference

Volume

2003

Document type

Conference paper

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Energy Engineering

Keywords

  • Slot film cooling
  • Recirculation bubbles

Conference name

ASME Summer Heat Transfer Conference (HT2003), 2003

Conference date

2003-07-21 - 2003-07-23

Conference place

Las Vegas, NV, United States

Status

Published

ISBN/ISSN/Other

  • ISBN: 0791836959