The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Proton NMR of (15)N-Choline Metabolites Enhanced by Dynamic Nuclear Polarization.

Author

  • Riddhiman Sarkar
  • Arnaud Comment
  • Paul R Vasos
  • Sami Jannin
  • Rolf Gruetter
  • Geoffrey Bodenhausen
  • Hélène Hall
  • Deniz Kirik
  • Vladimir Denisov

Summary, in English

Chemical shifts of protons can report on metabolic transformations such as the conversion of choline to phosphocholine. To follow such processes in vivo, magnetization can be enhanced by dynamic nuclear polarization (DNP). We have hyperpolarized in this manner nitrogen-15 spins in (15)N-labeled choline up to 3.3% by irradiating the 94 GHz electron spin resonance of admixed TEMPO nitroxide radicals in a magnetic field of 3.35 T during ca. 3 h at 1.2 K. The sample was subsequently transferred to a high-resolution magnet, and the enhanced polarization was converted from (15)N to methyl- and methylene protons, using the small (2,3)J((1)H,(15)N) couplings in choline. The room-temperature lifetime of nitrogen polarization in choline, T(1)((15)N) approximately 200 s, could be considerably increased by partial deuteration of the molecule. This procedure enables studies of choline metabolites in vitro and in vivo using DNP-enhanced proton NMR.

Publishing year

2009

Language

English

Pages

16014-16014

Publication/Series

Journal of the American Chemical Society

Volume

131

Issue

44

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Neurosciences

Status

Published

Research group

  • Brain Repair and Imaging in Neural Systems (BRAINS)

ISBN/ISSN/Other

  • ISSN: 1520-5126