The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nigrostriatal {alpha}-synucleinopathy induced by viral vector-mediated overexpression of human {alpha}-synuclein: A new primate model of Parkinson's disease.

Author

Summary, in English

We used a high-titer recombinant adeno-associated virus (rAAV) vector to express WT or mutant human alpha -synuclein in the substantia nigra of adult marmosets. The alpha -synuclein protein was expressed in 90-95% of all nigral dopamine neurons and distributed by anterograde transport throughout their axonal and dendritic projections. The transduced neurons developed severe neuronal pathology, including alpha -synuclein-positive cytoplasmic inclusions and granular deposits; swollen, dystrophic, and fragmented neuritis; and shrunken and pyknotic, densely alpha -synuclein-positive perikarya. By 16 wk posttransduction, 30-60% of the tyrosine hydroxylase-positive neurons were lost, and the tyrosine hydroxylase-positive innervation of the caudate nucleus and putamen was reduced to a similar extent. The rAAV-alpha -synuclein-treated monkeys developed a type of motor impairment, i.e., head position bias, compatible with this magnitude of nigrostriatal damage. rAAV vector-mediated alpha -synuclein gene transfer provides a transgenic primate model of nigrostriatal alpha -synucleinopathy that is of particular interest because it develops slowly over time, like human Parkinson's disease (PD), and expresses neuropathological features (alpha -synuclein-positive inclusions and dystrophic neurites, in particular) that are similar to those seen in idiopathic PD. This model offers new opportunities for the study of pathogenetic mechanisms and exploration of new therapeutic targets of particular relevance to human PD.

Publishing year

2003

Language

English

Pages

2884-2889

Publication/Series

Proceedings of the National Academy of Sciences

Volume

100

Issue

5

Document type

Journal article

Publisher

National Academy of Sciences

Topic

  • Neurosciences

Status

Published

Research group

  • Brain Repair and Imaging in Neural Systems (BRAINS)
  • Neurobiology

ISBN/ISSN/Other

  • ISSN: 1091-6490