The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Optimal design of plate heat exchangers with and without pressure drop specifications

Author

Summary, in English

The traditional design method for plate heat exchangers(PHEs), either epsilon-number of transfer units (epsilon-NTU) or logarithmic mean temperature difference method, involves many trials in order to meet the pressure drop constraints. This can be avoided through the developed design method, which takes the full utilization of the allowable pressure drops as a design objective. The proposed method is valid for the design situations with and without pressure drop specifications. In the case of the design with pressure drop specification, only one stream can fully utilize the allowable pressure drop. In the case of no pressure drop specification, allowable pressure drops can be determined through economical optimization. Compared to the previous design method, the proposed method does not require many trial iterations. Instead, all heat exchanger parameters, including plate size, number of passes, path, fluid velocity, etc., are determined in a straightforward way. Moreover, the suggested method can guarantee that the optimized values of allowable pressure drops can be fully utilized simultaneously by the two streams. In addition, the optimal corrugation angle is discussed for the most common chevron-type PHEs. (C) 2002 Elsevier Science Ltd. All rights reserved.

Department/s

Publishing year

2003

Language

English

Pages

295-311

Publication/Series

Applied Thermal Engineering

Volume

23

Issue

3

Document type

Journal article

Publisher

Elsevier

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1359-4311