The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Serial digital autoradiography with a silicon strip detector as a high resolution imaging modality for TRT Dosimetry

Author

Summary, in English

This study aims to investigate the possibility of implementing serial autoradiography using a silicon strip detector as an imaging modality in pre-clinical radionuclide therapy research, in order to study the effect of non-uniform uptake on absorbed dose distribution and biological response. Tumor tissues expressing CD20 (B-cell lymphoma) or carcinoembryonic antigen (CEA; colorectal cancer) were excised from animals injected with I-131-labelled anti-CD20 or anti-CEA antibodies and antibody fragments. The tumors were cryosectioned at 100 mu m and imaged using a real-time silicon- strip imager with a pixel-size of 50 mu m. Software was developed to correct for image artifacts and to realign the image sections into a volume by a two-step process with least square error and mutual information registration measures. The realigned volumes were convolved with beta dose point kernels to provide the dose rate distribution for I-131 and Y-90 at the time of sacrifice. Using these volumes, comparisons can be made between uptake and penetration of different antibodies and the dose rate uniformity of different radionuclides. Simulations performed using measured I-131 and I-125 energy spectra showed that energy separation with less than 5% error could be performed with 100 counts per pixel. Imaging and subsequent separation of a sample containing both I-131 and I-125 proved the possibility of simultaneous imaging of two targeting agents in the same tissue. Thinner tissue sections were also set aside and successfully used for H&E staining and immunohistochemistry to enable future comparison of uptake and dose rate in different cell-type populations in the tissue. This method successfully provides high-resolution activity and dose rate volumes and has potential for multi-labeling imaging and co-registration with histology. As a complimentary imaging modality it can aid in investigating the effect of non-uniform uptake. Optimization is still needed in both the sectioning protocol and realignment software.

Publishing year

2007

Language

English

Pages

4054-4056

Publication/Series

2007 IEEE Nuclear Science Symposium Conference Record, vols 1-11

Document type

Conference paper

Publisher

IEEE - Institute of Electrical and Electronics Engineers Inc.

Topic

  • Radiology, Nuclear Medicine and Medical Imaging

Conference name

IEEE Nuclear Science Symposium/Medical Imaging Conference

Conference date

2007-10-26 - 2007-11-03

Conference place

Honolulu, HI, United States

Status

Published

ISBN/ISSN/Other

  • ISSN: 1082-3654
  • ISBN: 978-1-4244-0922-8